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Similarity solutions in which the vorticity decays algebraically towards the 
outer limit of the viscous layer are shown to be possible limit solutions of the full 
boundary-layer equations with exponential decay. The discussion is illustrated 
by consideration of a mainstream applicable to viscous flow in a cone. 

1. Introduction 
In  a recent paper Ackerberg (1965) considers the steady, axisymmetric, 

converging motion of a viscous incompressible fluid inside an infinite circular 
cone. For large rv /A,  where r is the distance from the vertex, A the volumetric 
flow rate and v the kinematic viscosity, a solution is found by the Stokes method. 
For small rv /A there is an inner expansion which satisfies the no-slip condition 
at the wall, and an outer expansion which satisfies a condition at the axis of the 
cone. Following Goldstein (1965) Ackerberg insists that these expansions match 
with an exponentially small error. This requirement implies that the outer 
solution near the apex is not potential sink flow, for which the outer velocity 
is Ucc r2. The smallest allowable singularity for which the inner solution has 
exponential decay has Ucc r--3, and Ackerberg shows that the result of using 
this form of the outer velocity as a first approximation near the apex is a vortex 
motion with closed streamlines and a stagnation point on the axis. On physical 
grounds this situation does not appear likely to occur, and indeed it has not been 
observed experimentally. 

In  view of the fact that a potential sink flow seems a more acceptable solution 
from a practical standpoint and is considered to be applicable to flow in a cone 
by Jones and Watson (see Rosenhead 1963), a thorough investigation of the 
validity of the reasons for its rejection is necessary. In  this paper we suggest 
that the solution of the associated similarity equation should not be disallowed 
merely because it has algebraic decay at the edge of the boundary layer. The 
similarity solution will be an asymptotic solution of the full boundary-layer 
equations and at  best can be expected to be correct in the limit r .+ 0. It is 
argued that algebraic decay although not permitted over a finite range of x, 
where x measures distance along one wall, may be allowable at singular points, 
and that similarity solutions with algebraic decay can be limit solutions of the 
full boundary-layer equations with exponential decay. 

The investigations in support of the above argument are as follows. In $ 2  
the behaviour of the solution of the full boundary-layer equations at large 
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distances from the wall is discussed. This represents the limiting process y + co. 
In  $ 3  similarity solutions are considered as limiting solutions for some limit x, 
of the variable x. If the double limit x + xl, y + co is the same taken in either 
order we have what me shall term a ‘commutative’t approach to the limit 
resulting in exponential boundary-layer decay. However, if there is a non- 
commutative approach to the limit, algebraic decay of the similarity solution 
may result and the point x = xl, y --f 00 is a singular point. This argument is 
illustrated by consideration of a mainstream 

U1(S) = c( 1 - S)m,  (1 .1)  

where c > 0, m. < 0 are constants, and it is shown that if m+ 1 < 0 we have a 
commutative approach to the limit x --f 1,  y -+ co, but if m + 1 2 0 the approach 
is non-commutative. That this non-commutative approach to the limit is not a 
sufficient ground for rejecting the similarity solution is supported by the investi- 
gations of 0 4. In  this final section the limit y + co, x -+ 1 in this order is considered 
numerically by use of Gortler’s (1955) series. Two examples are discussed. ?he 
fir& with U,(x) N (1 - x)-1 as x + 1, is chosen to show that the method predicts 
the generally accepted limit behaviour as x + 1, and because the singularity a t  
x 2 1 is more severe than in the case of flow in a cone for which, after applying 
the Mangler-Stepanov transformation, the appropriate mainstream velocity 
U,(x) N (1 - x)-% as x -+ 1. It is this second example which is of chief interest, 
and again Gortler’s series gives the same results for the skin friction and dis- 
placement thickness as x + 1 as does the similarity solution, even though the 
latter has algebraic decay while the former is constructed from a sequence of 
functions with exponential decay. The evidence for permitting such algebraic 
decay at singular points thus seems fairly conclusive. 

2. The boundary-layer equations and the solution at large distances 
from the wall 

The equations describing the two-dimensional steady flow in the boundary 
layer of an incompressible fluid with a main stream Ul(x) are 

au av 
ax ay 
-+- = 0, 

(2.3) 

where x, y are measured along and perpendicular to the surface, respectively, 
and u,v  are the corresponding velocity components. The variables v and y 
are ‘scaled’ variables and are related to the mainstream or outer variables 
d, yf  by v = v’lvf, y = y’/v), the symbol v denoting the kinematic viscosity. The 

t The word ‘commutative’ serves to distinguish between the type of double limit we 
have considered here, i.e. one in which the approach to the limiting point is along lines 
parallel to the co-ordinate axes only, and the more general double limit in which the 
approach to the limit may be made along any path in the (ay)-plane. If the structure of 
the solution is independent of the path in the second case we may d e h e  the double limit 
to be ‘uniform’. 
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boundary conditions associated with these equations are that u is a given func- 
tion I ( y )  of y at  some initial station of x which we can take to be x = 0, and 

u = v = O  at y = O ,  x > O ,  (2.3) 

u+ Y ( x )  as y-tco, x > 0. (2.4) 

The manner in which u -+ U,(x) as y --f GO is discussed by Goldstein (1965). 
He notes that to find higher approximations to the Navier-Stokes equations 
than are implied by (2.1), (2.2) the correct procedure is to match an expansion for 
small viscosity in the outer variables 2, y' t o  one in the inner or scaled variables 
x ,  y. Expansions for the stream function e', defined by u = a$'/ay',, v' = - a$'/ax, 
in powers of vt might first be tried with 

(2.5) 

As Goldstein says : ' It is known that expansions of these forms are not sufficiently 
general, but the simplest possible case will serve to illustrate the matter under 
discussion.' In  (2.5) the asymptotic expansions of f o ,  f l ,  f 2 ,  . . . for large y provide 
the values of g,, g2 ,  g,, . . . as y' + 0. If a term y-" occurs in the asymptotic expan- 
sion off,, then the term in dA' in @Autside would behave like y-" as y' --f 0. Since 
all subsequent gi are harmonic if go is harmonic, and it is impossible for a harmonic 
function to be infinite along a finite portion of the x-axis, Goldstein excludes such 
algebraic decay and rewrites the condition (2.4) as 

I Ib:,lrtslde = g,,o(x> Y ' )  + " h ( X ,  Y') + " S 2 f X 7  Y') + . v . 7  

1C':,hlde = v ~ r ~ o f o ( x , Y ) + ~ ~ f , ( ~ , Y ) + ~ ~ 2 f , ( ~ , . ~ )  + 

(2.6) 

for all real AT. However, the investigations of this paper seem to indicate that 
non-exponential decay is permissible at  singular points in the event of a non- 
commutative approach to the double limit x -+ a ,  y -> GO, where a is either 0 , l  or 
GO. It is convenient at  this stage to consider the limit y + GO and discuss the form 
taken by the solution at  the edge of the boundary layer. 

If we consider a boundary layer that at  some stage, say L = 0, had either a 
Blasius- or stagnation-type velocity profile, it  is to be expected that for positive 
x and large y the velocity components may be written 

u = U,(X) + ,4(x, y )  exp [ - ( Y ; ; y 2 ] +  ..., "'= -,l/c7;(z)+h'(z)+ .... (2.7) 

Here k, P, h' are functions of x alone and A is algebraic in y, i.e. it can be written 
as a series of descending powers of y whose coefficients are functions of x.  Further 
the terms neglected in (2.7) are exponentially smaller than those retained. If 
( 2 . i )  is substituted into (2.2) the terms of highest order lead to 

43-2 



676 8. N .  Brown and K. Stewartson 

When the coefficients of y2, y and 1 in this expression are equated to zero the 
following equations result for the functions F(x) ,  k(x) ,  A(x ,  y): 

From (2.9), (2.10) we obtain immediately 

(3.9) 

(2.10) 

(2.11) 

(2.12) 

xl, k ,  being constants of' integration, while the solution of (2.11) is 

A = G(x)K(yJW) ,  
where K is an arbitrary function. This leads to 

G(x)  = - I - . -  L ( x )  = ~ - ,  "2 Ul (2.13) 
a 

Ul(/I C;dx)*' s:, UldX 

where al, a2 are constants. Since A is an algebraic function of y its form when y 

UlY (2.14) 
is large is a 

A =  

U1(/;u1dx)(& ' 

where n is a constant. However, the governing equations (3.1), (2.2) are para- 
bolic, so an essential additional condition is a prescribed velocity profile at an 
initial station of x. This will determine the values of the exponent n in (2.14) 
and the constant 5,. If the initial profile is that of Blasius, for example, so that 
as x -+ 0 for large y 

(2.15) 

(see Schlichting 1960), where U, = U.(0), = 1.72, y1 = 0.231, it follows that 
n, = - 1, x1 = 0. On the other hand if we start with a stagnation-point profile so 
that U,(x) = Uox for small x, then the initial profile for large y takes the form 

x *2UO 
uz=.c',- ''1 ___ (uox)* exp [ - a (Y - pl (ui) ) z] , 

Y 

(2.16) 

where 8, = 0.648. Thus n = - 3, x1 = 0 in this case. Similar considerations of 
the form of the flow at the outer edge of the boundary layer have been made by 
Tollmien (see Rosenhead 1963), but the co-ordinates employed are not suited to 
our purpose. The function k (x )  may readily be identified with the displacement 
thickness 8*(x) defined by 

(2.17) 



Similarity solutions of boundary-luyer equations 677 

From ( 2 . 7 )  we see that for large y the stream function 

9 w li,(x) y - h(x) - const., (2.18) 

so that (2 .19)  

Since for the two profiles given by (2 .15) ,  (2 .16 )  we know that /3,(x/U,)*, &,/Ut 
are respectively the displacement thicknesses, we deduce that for any boundary 
layer that initially had a Blasius or stagnation-point type profile the constant in 
(2 .19 )  is equal to Ic, in (2 .12) .  

If instead of (2 .7 )  the exponentially decaying velocity profile is taken as 

u = U,(x) + A ( x ,  y) exp [ - ( Y ; - - $ ) ) a ]  + ..., 0 = -yU;(x)+h’(x)+ ... (a  > O ) ,  

(2 .20)  

it can be shown that the only other possible value of a is 1. When the expressions 
(2 .20)  are substituted into (2 .2 )  we obtain 

a(a - 1 )  (y - kp-2 

2F 
a2A a aA - - p (y - kIa--l ay 
aY2 

It follows, on equating to zero the coefficient of ya, that 

(U1F’A/2F2)  + ( a U ; A / 2 F )  = 0 if a < 2 

= A a 2 / 4 F 2  if a = 2,  (2 .22)  

while a > 2 is incompatible with the original assumption (2.8).  The case a = 2 
has been dealt with already, and if a < 2 (2 .22)  gives 

F K  Via .  (2 .23)  

Consideration of the terms of the next highest order of magnitude shows that 
a = 1, in which case it is simpler to dispense with the function k(x) and write 

u = U , ( z ) + A ( x , y ) e - 2 / 1 ~ ( ~ ) +  ..., v = -y Ui(z)+h’(z)+ .... (2 .24)  

The coefficient of yo in (2 .21)  with a = 1, k = k’ = 0 gives 

(2 .25 )  

to which, if required, the solution in the form A = G ( x )  K{yL(x)} with LccU,(x) 
may be found. The function G(x)  involves the function h’(x) which can only be 
determined when the asymptotic form (2 .24)  is matched to the solution for small y. 
An example of exponential decay of the form (2 .24)  is given by the flow in a 
convergent channel with vertex at x = 1 for which U,(z) = l / ( l - x )  and (see 
Schlichting 1960) 

u/U, = 3 tanhz{(y/(l -x) , / 2 )  + 1-146)- 2 

z 1 - 1.212 e--2/d21(1-%) as y + CO. (2.26) 
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3. The role of the similarity solution in boundary-layer theory 
‘Similar’ solutions of equations (2.1), (2.2) are defined as those for which two 

velocity profiles u ( r , y )  located at different stations of x differ only by scale 
factors multiplying u and y. The scale factor for zc is T\(x), the associated main- 
stream velocity, and then the above definition requires that 

u/U,(x) = a function of 7, where 7 = yg(x), (3.1) 

for some function g(x). Similarity solutions of (2.1), (2.2) are possible, as noted 
by Goldstein (1939, 1965), if I $  = c ekx or c e-ks, or if 

(3.2) 

where c, I ,  m, k are constants, as long as U,(x) given by (3.2) is real. 
The great advantage of similarity solutions as defined above is the reduction 

of the partial differential equations of the problem to one ordinary third-order 
differential equation which, although still non-linear, is a considerable mathe- 
matical simplification. However, the limitations of such solutions must be 
realized. The partial differential equations do not impart their parabolic nature 
to the ordinary differential equation on whose solution it is not possible to impose 
an arbitrary condition at an initial station of x, since all values of x are now equiva- 
lent. The conclusion is then, that these similarity solutions are in a sense asymp- 
totic, and will only be correct in some limit which may never be attained. In 
any particular application of a similarity solution this limitation of the solution 
should be realized, and the limit in which it is asymptotically correct should be 
carefully considered. 

We now examine possible limiting forms of Ul(x), and discuss the regions either 
finite or infinitesimal, in which we may expect the associated similarity solution 
to give an asymptotically correct picture of the flow. The most familiar of all 
similarity solutions is probably that of Blasius for a flat plate in which U,(x) = U,. 
There is no loss of generality in taking U, = 1, and we note that this could be a 
limiting form of Ul(x) as x tends either to zero, infinity, or a finite intermediate 
value. Where then will the similarity solution in terms of the variable 7 = y/Jx 
be a relevant solution of the boundary-layer equations? The answer to this 
question depends not only on U,(x) but also on I @ ) ,  the value of u at x = 0. 
If I(y) = 1 for all y > 0 it  is relevant as far as the first value of x at  which U, 
differs from unity. If I(y) + 1 for all y > 0 then no matter how U, varies it cannot 
be the relevant solution for any finite x, for by anology with the heat equation 
the eqect of the non-uniformity in I takes an infinite distance to disappear. 
At best, therefore, it  will be relevant only in the limit x-too, and even then 
only if U,(co) = 1. The velocity profile for large y is given by (2.15), and atten- 
tion is drawn to the fact that the exponential decay exp ( - $y2/x) is as given by 
(2.7) and (2.12) with F ( x )  = 2x. Thus the similarity solution can, and does, give 
the right x-dependence of the exponential decay as forecast by (2.7). If we 
assume for the sake of argument that the Blasius solution holds only as x + 03 

we have a commutative approach to the double limit x + co, y --f 00. The limit 
z -+ OC) followed by y -+ a3 is given by the similarity solution and (2.15)) while 

U,(x) = c(Z 5 x)”, 
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the limit y -+ co followed by x -+ co is given by (2.7) and (2.12). In this case the 
limits are the same. If we appear to labour this point it is because the concept of 
these double limits is essential to our subsequent arguments. 

Similarity solutions, with U, = cxm (c  > 0 ) ,  are characterized by 

which lead to the familiar Palkner-Skan (1930) equation 

F ~ + + ( m + 1 ) J ’ l F ~ - m F ; 2 + m  = 0. (3.4) 

The solution of (3 .4)  with boundary conditions Fl(0) = F;(O) = 0, P;(co) = 1 
will again be a limit solution of the boundary-layer equations. If m > 0 we can 
expect the solution to hold in the limit x -+ 0 if Ul(x)/xm -+ c as x -+ 0 and I(y) = 0. 
It will be a limit solution as z -+ co if U, M exm for large x: and I ( y )  + 0. If m < 0, 
(3 .3) ,  (3.4) constitute an asymptotic solution in the limit x + 03 and then only if 
separation has not previously occurred. The similarity solution predicts separa- 
tion when m = - 0.0904. For m + 1 > 0 an appropriate change of variables is 

and then equation (3.4) becomes 

where 

f” +y +P(1 -f’2) = 0,  

/? = 2m/(m+ 1 ) .  

The solutions of (3.6) for rn 2 - 0.0904 have been tabulated by Hartree (1937). 
For large Y the solution takes the form 

u/u,(x) N 1 + A ,  e-+C8C-2fl-1+ B, ~ 2 @ ,  (3 .8)  

where 5 = Y + b and A,, B,, b are constants. If /? > 0,  B, must be zero and the 
exponential decay e-+ca N exp [ - &(m + 1)xm-ly2] given by (3.8) is as predicted 
by (2 .7)  with 

2x1- 
F(x) = P/;U,dx/u! = m. (3.9) 

Thus as in the case of the Blasius profile the sequence of limits x -+ co, y -+ 00 

and y --f co, x -+ CO give the same result. However, if /3 < 0 there is now no need 
for B, to be zero in order to satisfy the condition u --f U,(x) as y --f 00 and the solu- 
tions are not necessarily unique. If the extra condition of exponential decay is 
added, two solutions are obtained with the correct exponential behaviour at  
infinity as predicted by the full boundary-layer equations. The one found by 
Stewartson (1954) has f ” ( 0 )  < 0,  and if on physical grounds back-flow is to be 
excluded, we infer, though cannot prove, that the other is the required solution. 
Thus in this case we have chosen the solution so that the limit x -+ 00, y + 00 

is the same taken in either order. 
In  addition to the above limit solutions there are those for which x tends to a 

finite non-zero value. These are given by 

U,(x) = c ( l  - x ) m  (c > O ) ,  (3.10) 
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where, without loss of generality, we have taken 1 = 1 in (3.2). The associated 
similarity solution we expect to be asymptotically correct in the limit x + 1. 
The appropriate form is 

u = U1(x) Pi(q), g ( x )  = cq1 -2)&(rn-,), (3.11) 

where P ~ - ~ ( m + 1 ) F l F ; + m F ; 2 - m  = 0. (3.12) 

The term 'backward boundary layer ' is used by Goldstein to denote a boundary 
layer which has beeninfluenced by viscosity through an infinite distance. Such ter- 
minology will not be employed here; instead the point x = 1 when U,(x) = c( 1 - z)" 
will be regarded as the 'end-point ' of an ordinary forward boundary layer. Of 
course if m > 0 we do not expect the fluid to attain this end-point as separation 
will have taken place for some z < 1. There are in fact no solutions of (3.12) for 
m > 0 which satisfy 

P,(O) = Pi(0) = 0, Pi(C0) = 1. (3.13) 

If m + 1 > 0 we make the transformation (3.5) and equation (3.12) becomes 

f"-f-P(l-f'2) = 0, (3.14) 

where again p = 2m/(m+ 1). If, however, m+ 1 < 0 we write 

y = [ - t (m+  1 ) l h  f ( Y )  = r.-m+ 1)1%,(7l) (3.15) 

and obtain equation (3.6). The solution for large Y of equation (3.6) is given by 
(3.8), while in the case m+ 1 > 0 the asymptotic form is, from equation (3.14), 

u/U,(x) - 1 +A,e~ga~-2b-1 +B1[28 (see Goldstein 1965). (3.16) 

The condition at infinity can only be satisfied if A,  = 0 and 8 < 0 (m < 0 )  
in which case the decay is algebraic. Goldstein excludes such algebraic decay 
but the investigations of the following section give support to our conjecture 
that similarity solutions with algebraic decay can be limit solutions of the full 
boundary equations with exponential decay. 

The solution for large y of the full boundary-layer equations is given by (2.7) 

with r z  

2( 1 - x)-2m 

c(m + 1) 

2J (1-x)mdx 

c( 1 - x)2" 
- - [l- (1 - x)m+l], (3.17) 0 F(x)  = 

a n d i f m + l  < O,asx+l ,  

P(z)  - { - 2/c(m + l)} (1 - x)1-", (3.18) 

b u t i f m + l  > O,asx+l ,  

P(2) - {2( 1 - 2)-2"/c(m + l)} . (3.19) 

The convergence or otherwise of the integral in (3.7) as x+ 1 is seen to be 
crucial. Suppose first that m+ 1 < 0. Then the form of P(x) as x -+ 1, given by 
(3.18), implies that the exponent of the exponential decay of U,-u in (2.7) is 

t ( m  + 1 )  cy2( 1 - Z)-, (3.20) 
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which contains the similarity variable yg(x) ,  where g(x) is given by (3.11). Thus 
the double limit x -+ 1, y -+ 00 is commutative. 

Suppose now that m+ 1 > 0. Then the form of P(x) as x -+ 1, given by (3.191, 
implies that the exponent of the exponential decay of CG-u in (2.7) is 

- &(m + 1)  cy2( 1 - x ) ~ ~ ,  (3.21) 

which does not contain the similarity variable yg(x).  Thus if 1 > m+ 1 > 0 the 
similarity solution cannot possibly give the correct exponential behaviour as 
y + 00, quite apart from its detailed properties. Thus the double limit is non- 
commutative, but there is no reason to suppose that this, of itself, invalidates 
the results given by the similarity solution for finite 7. Indeed in the Appendix 
an illustrative differential equation is solved which points the way to the re- 
conciliation of the different decay properties in the two limiting processes. The 
discussion there leads one to expect that as 5 -+ 1, with y (  1 - ~ ) & ~ - l )  fixed, the 
similarity solution is correct and u - Vl algebraically small if 

(1-2g-m 9 y (1 --X)+-. (3.22) 

As x -+ 1, with y (  1 -x)m fixed, the similarity solution is not correct; u- U, 
is algebraically small if y ( 1  - x ) m  is small and (3.22) holds, but is exponentially 
small if y( 1 - 2)” is large. 

The question might now be asked that if algebraic decay is permitted in this 
case why is it not permitted in the solutions of Hartree for Ul(x) = cxm with 
0 > m > - 0.09041 A definite answer to this question cannot be given, although 
the difference between the two situations should be noted. When U,(x) = cxm 
the exponential decay solution is selected because there is a choice and it seems 
reasonable to choose Ohe solution with the same exponential decay as the solu- 
tion of the full boundary-layer equations.? However, when 

U,(x) = ~ ( 1 - x ) ~  (m+ 1 > 0) ,  

there is no choice of solution; the algebraic one is unique and the similarity solu- 
tion could not in any case give the correct exponential decay. 

Another example of a non-commutative approach to the double limit x -+ 1, 
y -+ 00 may be noted. Suppose that U,(x) = 1/( 1 - x) and that at x = 0 a Blasius 
velocity-profile is prescribed. Then the exponential decay will be of the e-’ 
form given initially by (2.7). However, the similarity solution (2.26) gives an 
e-v exponential decay. This non-commutative approach has not been regarded 
as exceptional because in both cases the decay is exponential. 

4. Solution by Gortler’s series 
The numerical evidence in support of the assertion that similarity solutions 

with algebraic decay need not necessarily be disallowed is now presented. In  
view of the fact that the subject of viscous flow in a cone is of immediate interest 
we consider an example in which U,(x) N (1 - x)-$ as x -+ I, where x = I is the 
vertex of the cone. The exponent - $  is obtained on using Mangler’s trans- 

t Numerical evidence to support the choice of the exponentially decaying solution 
is now available and will be published elsewhere. 
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formation which reduces the axisymmetric boundary-layer equations with a 
mainstream 01(2) = ( 1  -S)-2 to two-dimensional form with a mainstream 
Ul(x) = (1 - x)-f. The method of procedure is to compute the skin friction and 
displacement thickness by Gortler’s series, let x -+ 1 in the final results and com- 
pare them with the values obtained by the solution of the associated similarity 
equation. It is of interest to note that the independent variable in the equations 
used by Gortler to compute the terms of the series is 

which is the variable y/,/{B’(x)} obtained in (2.7), (2.12). Thus indeed Gortler’s 
series will allow us to take the limit y +. co, x --f 1 in that order, where the limit 
y -+ 00 is as defined by the investigation of 8 2. The similarity solution represents 
the order x -+ 1 followed by y 

In  order to test the accuracy of this application of Gortler’s series we first 
consider an example with a more severe singularity as x +. 1.  This is the two- 
dimensional flow in a convergent channel for which the associated similarity 
solution is generally accepted to give correct results although, as pointed out 
earlier, there is again a non-commutative approach to the double limit though 
in both cases the decay is exponential. Gortler noted that because of the singu- 
larity in the solution at separation when x C= 0.16 for U,(x) = 1/( 1 + x), the series 
for U,(x) = I/( 1 - x) also has a limited radius of convergence because, although 
there can be no separation, the associated series will have a singularity on the 
negative real axis due to its similarity to that for U,(x) = 1/(1 +x). Thus it is 
essential to choose L\(x) so that, not only does it have the right form as x -+ 1, 
but leads to a convergent series. By trial it is found that convenient forms to 

co. 

The stagnation point at x = 0 is not a disadvantage, and possible physical 
situations which these flows could represent are illustrated in figures 1 (a), (b) ,  
where figure 1 (a) is probably more appropriate for the two-dimensional flow, 
while figure 1 ( 6 )  could represent one of a series of cones in an infinite reservoir. 
In  each case we consider the boundary layer on the shaded wall from x = 0 to 
x =  1. 

(a) Y ( x )  = x / ( l  -x”. 
The similarity equation for the convergent channel flow is (3.12) with 

?n = - 1 and Q = 2-*(1 -x)-Iy, the factor 2-4 following from the fact that 
Ul(x) N 1/2( 1 - x) as x + 1. The solution is given by Schlichting (I960), and the 
formulae for the skin friction and displacement thickness are 

since F;(O) = 8, and 

(4.3) 

( l - ; )dy=2*( l -x )  ( l - B ’ i ) d ~ =  2(3-64)(1-x).  (4.4) som 
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When the skin friction is calculated from Gortler's series we obtain 

(1.23259 + 1.481526- 0*54000[2 + 0*46857C3 
X2 

- 0.5101 1 lC4+ 0.62856['), (4.5) 
where 6 is the auxiliary variable given by 

(4.6) 

x 1 

/ 
FIauRE 1 (a), (b). Possible physical situations appropriate to the mainstreams 

given in equation (4.2). 

Since z -+ 1 corresponds to 6 + co, it is advisable to investigate the convergence 
of (4.5) in terms of the original variable x. The expression becomes 

X ""1 = ___ (1.23259 + 0 . 4 3 2 6 1 ~ ~  - 0 . 0 3 9 6 9 ~ ~  + 0.00948~~ 
ay l / =o  (1 - .2)2 

- 0 . 0 0 2 8 8 ~ ~  + 0.001 1 1 ~ "  - . . . ). (4.7) 

The coefficients of this series are decreasing and the terms are of opposite sign, 
ao we may expect it to converge even at x = 1. The last three partial sums are 

1.6350, 1.6321, 1.6333 (4.8) 

so we deduce that, as x -+ 1, 

which agrees with (4.3) to three places of decimals. 
The displacement thickness 6" is obtained as the series in 6 

(1-X2) 

x2/(25) 
6* = ___ (0.64790- 0.55174t$ 0*56986t2- 0.65318[3 

+ 0*82695E4- 1*11888c6), (4.10) 



684 

and when put in terms of the original variable x this becomes 
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6* = (1 -2’) ( 0 ~ 6 4 7 9 0 - 0 * 1 1 3 9 0 ~ ~ + 0 ~ 0 2 3 3 0 ~ ~ - 0 ~ 0 0 8 3 1 ~ ~ + 0 ~ 0 0 2 6 1 ~ ~  

- 0 . 0 0 0 8 3 ~ ~ ~ ) .  (4.11) 

Again the coefficients are decreasing and of opposite sign. On letting x + 1 
we deduce that the sum of the series lies between 0.5516 and 0.5508. Thus, we 
estimate 

(1-x)-16*-+ 1.102 as x - f  1, (4.12) 

while (4.4) gives (1 - x)-l&, = 1.101, (4.13) 

and (4.12) differs from this by about 0.1 yo. 
The above seems a convincing test for the application of Gortler’s series to  

such a situation. There is no point in verifying the result for the momentum 
thickness, as this can be expressed in terms of the two quantities already found. 

( b )  U,(X) = ./( 1 - x2)K 

The similarity equation for this mainstream velocity as x -+ 1 is (3.12) with 

f”-ff”+4(l-ff2) = 0, (4.14) 

which is (3.14) with p = - 4. The asymptotic form of the solution is given by 
(3.16) and the required solution is that for which A ,  = 0. A table off is given in 

Rosenhead (1963). The value off”(0) is 2.273 and (1 - f’) dY is equal to 0.410. 

Since the independent variable Y of equation (4.14) is given in terms of the original 

?/ = 2)(1-~)87  = 6*2*(1-~)% Y (4.15) 
variable y by 

and 

rn = - Q, or on making the change of variable (3.5), 

/om 

u = 2-Q( 1 - 2)-% f f (  Y ) ,  

we have (4.16) 

Also 6” = 28 ,/3( 1 - x)# x 0.410. (4.17) 

The expression for the skin friction calculated from Gortler’s series is 

(1*23259+ 1*48152h+ 1.00847h2+0-87174h3 

+ 0*69875h4+ 0*60958h6), (4.18) 

where 3h 2 = 5 = JU U1(X)dX = $[l- (1 --X2)*]. (4.19) 

However, we suspect that the singularity in au/ayJv,o as x-f 1 is (1 -xZ)-%. 
With this as a factor (4.18) becomes, in terms of x, 

(1.23259 + 0.08298~~ - 0 . 0 0 2 0 8 ~ ~  - 0.00039~‘ 
2 

- 0.00026~~ - 0.00016~’~). (4.20) 

Even as x -+ 1 the terms of this expression are rapidly decreasing. The last three 

1.3135, 1.3131, 1.3129, (4.21) 
partial sums are 
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and fitting a polynomial in l /n  to these we estimate that 

This differs from (4.16) by less than 0-1 %. 
(1 -x)8au/ayI,=, + 2-8 x 1.312 = 2.272/2 4 6 .  

For the displacement thickness, Gortler’s series gives 
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(4.22) 

6” = J(2‘)(1 -x2)!! (0.64790+ 0-55174h- 0.04175h2+ 0.05576h3 
X 

- 0*02397h4 + 0*01681h5), (4.23) 
which may be written 

b* = (1 - x2)* (0.64790 + 0*03205x2 + 0 ~ 0 1 4 0 1 ~ ~ + 0 ~ 0 0 3 6 0 ~ ~ +  0*00419~* 
+ 0*00258~~~) .  (4.24) 

These terms are not decreasing as rapidly as those of (4.20) but it is expected 
that the series is convergent even as x + 1. The last three partial sums are 

0.6976, 0-7018, 0.7044, (4.25) 

and a polynomial in l /n  fitted to these three gives 0-71 14, so that as x -+ 1 

(1 -x)-$ b* + 25 $3 x 0-41 1, (4.26) 

which again differs from (4.17) by only 1 in the third place. Thus the similarity 
solution and the expansion method agree to a high degree of accuracy. It seems 
then that a similarity solution with algebraic decay can be the limit of a solution of 
the full boundary-layer equation, for in this one case at  least the different limiting 
processes lead to the same result. The only singular point is x = 1, y + 00, 
where the approach to the double limit is non-uniform. Further, since u -+ U, 
through exponentially small terms as y + m except at  one point only, the diffi- 
culty envisaged by Goldstein in matching the boundary layer with the inviscid 
flow outside will not be encountered. 

An illustrative dijjerential equation Appendix 

The following investigation of the analytic form of the non-commutative limit 
discussed in $9 2,3 was made on a suggestion by Dr N. C. Freeman. Although the 
boundary-layer equations appropriate to flow in a cone are linearized, the solu- 
tion obtained exhibits the predicted behaviour of exponential decay at the edge 
of the boundary layer except at the one point x = 1, corresponding to the vertex, 
where the approach to thelimit is non-uniform. 

u = u,- u!, v = -yu;(x) +h’(x) +v’ We write 

in equation (2.2), assume that u‘, v’ are small, and obtain the linearized equation 

In order to satisfy as far as possible the requirements of boundary-layer theory, 
the boundary conditions for equation (A 2) will be taken as 

u’ = 0, x = 0, y > 0, 

u1 = u,, y = 0, x > 0, 
(A3) 
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although it is realized that the last condition is incompatible with the previous 
assumption that u’ is small. However, it will be seen that the equation (A2) 
with the boundary conditions (A 3), which imply that u is zero on the boundary, 
attains its mainstream value at  the edge of the boundary layer, and that the initial 
profile is that of Blasius, is a suitable representation for illustrating the non- 
uniform approach to the limit. 

If in (A 2) we substitute 

U, = (1 -x)-$, U’ = ( 1  -x)-# H ( x ,  r ) ,  h ‘ ( ~ )  = B(l -x)-%, (A 4) 

where 3 = y( 1 - x)-%, and B is a constant, the equation becomes 

with boundary conditions 
H = 0 ,  x = O ,  r > O ,  

H - t O ,  y-fco, x > O , i  
H = 1 ,  r = o ,  x > o .  

(A 6) 

If the term (1 - 2) aH/ax in equation (A 5) is neglected as x -+ 1,  for large values 
of 7, the form of the solution is as given by the similarity equation (3.14) with 
/3 = - 4. As 7 -+ 00, H = O(r-8) ,  and the decay is algebraic. However, theinvesti- 
gations of $ 2  indicate that equation (A2) leads to a solution in which zc’ tends 
to zero exponentially at the edge of the boundary layer. To reconcile these two 
statements it is necessary to consider the complete solution of (A 5) with bound- 
ary conditions (A 6) which may readily be shown to be, with B set equal to zero, 

where Y2 
12[( 1 - x)Q - ( 1 - X)+] . 

h, = - ~~ 
- ~. 

When 1 - x < 1 the behaviour of H for different regimes of y may be deduced 
from (A 7), (A 8) and is as follows: 

(i) when y2 = 0 ( 1  -x)%, then I9 z 0, and H is a function of the similarity 
variable g = y( 1 - x)-* alone: indeed it is exactly the same function as would 
have been found by conventional similarity arguments ; 

(1 - z)% then 19 < 1, and (ii) when (1 - x)* > y2 

27 
(A 9) 

so that H has an algebraic decay with respect to 9; 
(iii) when y2 N (1 - x)* the similarity solution is not correct and H has the 

form 



Ximilarity solutions of bowLdary-lnycr aquatiom 687 

(iv) finally, when y2 9 ( 1  - x)* then 

and decays exponentially. 
If B is non-zero a solutioii of (A 5) subject, to the boundary conditions (a 6) 

is not so simple, but may be obtained formally by the Laplace-transform method. 
This formal solution also leads to the conclusions (i)-(iv). 

1% E F E R E NC E S 
ACKERBERG, R. C. 1965 J. Fluid Mech. 21, 47. 
FALKNER, V. M. & SKAN, S. W. 1930 Aero. Res. Comm. R Ce. no. 1314. 
GOLDSTEIN, S. 1939 Proc. Camb. Phil. SOC. 35, 338. 
GOLDSTEIN, S. 1965 J. Fluid Mech. 21, 33. 
GORTLER, H. 1955 Tables of nnivcrsal functions of tho nibw writ's. Math. Inst. Unio. 

GORTLER, H. 1957 J .  Math. Mech. 6, 1. 
HARTREE, D. R. 1937 Proc. Camb. Phil. SOC. 33, 223. 
ROSENHEAD, L. 1963 Laminar Boundary Layers. Oxford University Press. 
SCHLICHTING, H. 1960 Boundary Layer Theory. New York: McGraw-Kill. 
STEWARTSON, K. 1954 Proc. Camb. Phil. SOC. 50, 454. 

Freiburg. 


